Planning and understanding : a computational approach to by Robert Wilensky

By Robert Wilensky

Show description

Read Online or Download Planning and understanding : a computational approach to human reasoning PDF

Best ai & machine learning books

Artificial Intelligence Through Prolog

Synthetic Intelligence via Prolog publication

Language, Cohesion and Form (Studies in Natural Language Processing)

As a pioneer in computational linguistics, operating within the earliest days of language processing via computing device, Margaret Masterman believed that that means, now not grammar, was once the most important to realizing languages, and that machines may well be certain the which means of sentences. This quantity brings jointly Masterman's groundbreaking papers for the 1st time, demonstrating the significance of her paintings within the philosophy of technology and the character of iconic languages.

Handbook of Natural Language Processing

This examine explores the layout and alertness of common language text-based processing structures, in response to generative linguistics, empirical copus research, and synthetic neural networks. It emphasizes the sensible instruments to deal with the chosen process

Additional resources for Planning and understanding : a computational approach to human reasoning

Sample text

Often these feedforward networks use the error of performance of feedback to learn. The nervous system also uses feedback to learn. Looping between groups or levels of neurons has inspired the development of resonating neural network computational approaches. The use of inhibition, as well as excitation, has guided the development of cooperative/competitive actions found in autoassociative neural network simulations. Promising areas of the brain to model and those that are currently areas of intense interest include the retina, audition, and olfaction.

Features such as edges, angles, and binocular disparity are developed in the cortical areas. These features appear to be processed in parallel systems. There are interconnections between some of the systems but most of these features are fused in association areas of the cortex. The visual system does not appear to identify a dog or other object at the occipital cortical level. This area of the cortex is the first to receive visual information through the most direct route to the cortex, however objects are not recognized here.

Recent publications by a growing circle of researchers working in an increasing number of universities and corporate laboratories have surfaced, and gradu­ ate programs dedicated to neural network technologies are emerging. The success of these activities, applications, and current research will determine the value and future of the neural network approach. REFERENCES Amari, S. (1967). "A theory of adaptive pattern classifiers," IEEE Trans, on Electronic Computers, EC-16, 299-307. Amari, S. (1972).

Download PDF sample

Rated 4.56 of 5 – based on 33 votes